GENETIC STUDY OF GUDALI AND WAKWA BEEF CATTLE BREEDS OF ADAMAWA REGION CAMEROON

Amount: ₦5,000.00 |

Format: Ms Word |

1-5 chapters |




ABSTRACT

The  present  study was  carried  out to evaluate  genetically  the  growth  performance  of the Gudali and Wakwa beef cattle. Data utilized for this study was obtained from the Institute of Agricultural  Research  for Development  (IARD), Wakwa  Station, Cameroon. The data used consisted  of pedigree  information  of 3788  animals  and 2276  performance  records  for  the Gudali  and Wakwa  cattle  respectively,  ranging  from  birth  to  36-months  weight  collected from  1968  and 1988.  The data were collected from compiled herd books (calf record sheet, bull  progeny  record  sheet  and  cow  record  sheet)  consisting  of pedigree  information  and performance  records from birth to 36-months weight for both the Gudali and Wakwa breeds. The raw data were edited  such that the utilized records  gave complete  information  on calf identity,  sire identity,  dam identity,  sex of animal,  dates of birth,  season of birth,  herd and weights  at birth,  3- month  weight  (3MWT),  4-  month  weight  (4MWT),  6-month  weight (6MWT), weaning weight (WWT), 12-month weight (12MWT), yearling weight (YWT), 18• month weight (18MWT), 24-month weight (24MWT), 30-month weight  (30MWT)  and 36- month  weight  (36MWT).  In order to determine  the fixed effects  that were included  in the model, a preliminary  analysis  was performed  using the general linear models  procedure  as implemented in the statistical package, Statistical Analysis System 8.2. Inbreeding coefficient was calculated using the Multiple Trait Derivative Free Numerator Relationship Matrix (MTDFNRM)  programme   of  the  Multiple   Trait  Derivative   Free  Restricted   Maximum Likelihood  (MTDFREML)  package. Genetic  parameters  of the growth traits were analyzed using  MDTFREML   package.  From  these,  the  additive  genetic  variance  (o),  maternal variance  (o,~), error variances  (o), phenotypic  variance  (o,), covariance  between additive genetic  and  maternal  variance  (cam),   correlation  between  additive  genetic  and  maternal variance   (r~ma),  and  heritabilities   were  derived  at  convergence.  Genetic  correlation   (ra) between growth traits was also calculated.  Preliminary analyses showed that all fixed effects of  calf  month  and  year  of  birth,  season,  sex,  herd  and  herd-year-season   had  a  highly significant (p < 0.0001) effects on all the growth traits studied while year of birth of sire was significant  (p < 0.05)  for all the traits  studied except  for 30- and 36-MWT.  In the Gudali breed,  cow  age  group  was  not  significant  (p > 0.05)  for  all traits  except  BWT,  3MWT, 4MWT,  and 24MWT,  which had highly significant  (p < 0.01) effects.  Also,  in the Wakwa breed,  cow  age  group  was  not  significant  (p > 0.05)  for  all traits  except  BWT,  3MWT, 4MWT,  and WWT.  The average inbreeding  coefficient  obtained in this study ranged from 0 to 8%. Maternal  variances for all traits studied were consistently  lower than additive genetic variance  in both breeds of cattle.  The covariance  between  direct and maternal  components was antagonistic in all traits studied.

The  direct  heritability  (ha)   estimates  for  BWT,  3MWT,  4MWT  6MWT,  WWT,  YWT,

18MWT,  24MWT,  30MWT,  and 36MWT were 0.39, 0.24, 0.22, 0.10, 0.25, 0.21, 0.18, 0.25,

0.18 and 0.18 respectively for the Gudali cattle.  On the other hand, the direct heritability (h\)

estimates  of BWT,  3MWT, 4MWT 6MWT, WWT,  YWT,  18MWT,  24MWT,  30MWT,  and

36MWT were 0.41, 0.22, 0.17, 0.25, 0.21, 0.16, 0.15, 0.22, 0.34 and 0.33 respectively  were obtained for the Wakwa cattle. The direct heritability estimate of birth weight in Wakwa was high  (0.41).  Moderate  additive  genetic  heritability  (h) estimates  were  obtained  for BWT (0.39),  3MWT  (0.24),  4MWT  (0.22),  WWT  (0.24),  YWT  (0.21),  24MWT  (0.25)  in  the Gudali  cattle.  Medium  h   were  obtained  for  3MWT  (0.22),  6MWT  (0.25),  WWT  (0.21), 24MWT (0.22), 30MWT (0.34), and 36MWT (0.33) in the Wakwa cattle. The lowly heritable

traits included  6MWT  (0.10),  18MWT (0.18),  30 MWT  (0.18) and 36MWT  (0.18) for the Gudali cattle, while for the Wakwa, they included 4MWT (0.17), YWT (0.16) and 18MWT (0.15).  The maternal  heritability  (h,~) estimates  were BWT  (0.05),  3MWT  (0.13), 4MWT (0.15), 6MWT (0.07) WWT  (0.11), YWT (0.10)  18MWT (0.05), 24MWT  (0.09), 30MWT (0.03), 36MWT (0.07) for Gudali cattle. Also, the maternal heritability  for the Wakwa cattle include:  BWT  (0.16),  3MWT  (0.16),  4MWT  (0.14),  6MWT  (0.18)  WWT  (0.18),  YWT (0.13),  18MWT (0.14), 24MWT  (0.03),  30MWT  (0.05) and 36MWT  (0.10). The maternal heritability  for performance  traits in both breeds falls between  lowly heritable  and medium heritable  traits.  The  moderate  to  high  values  of  heritabilities  indicated  that  selection  for growth traits was effective in spite of the antagonism association between direct and maternal effects. The additive direct genetic correlations  between some of the growth parameters were positive  and  high  (0.50  –   0.99).  The  same  pattern  was  observed  for  maternal  genetic correlations  among traits (0.53-0.99), though some had negative genetic correlations  (BWT and EMWT  (-0.80); BWT  and 36MWT  (-0.79).  Direct  genetic  correlations  between  BWT and WWT;  BWT  and YWT;  BWT  and  18MWT;  BWT  and  36MWT;  WWT  and  YWT; WWT  and  18MWT;  WWT  and  36MWT;   YWT  and  18MWT;  YWT  and  36MWT  and 18MWT and 36MWT were 0.53, 0.39,  -0.66,  -0.21, 0.88, 0.87, 0.70, 0.70, 0.60 and 0.50 for

the Gudali cattle.  The direct genetic correlations between the same traits in the Wakwa cattle were 0.79, 0.52, -0.50, -0.31, 0.95, 0.79, 0.69, 0.93, 0.60, and 0.49 respectively. The maternal genetic correlations  between  the same traits for Gudali cattle were 0.72,  0.39,  -0.81, -0.89,

1.00, 0.99, 0.97, 0.60, 0.70;  and 0.50; 0.62, 0.32, -0.80, -0.79, 0.75, 0.99, 0.99, 0.50, 0.60 and

0.53 for Wakwa  cattle. The positive  and high values reported  for the additive  genetic  and maternal  correlations  between  the  growth  parameters  indicate  that  selection  for  one  trait would result in genetic improvement in the other trait. On the whole, the level of performance of the two  breeds  of cattle  comes  close  to that reported  in literature  for beef  cattle.  The estimates  of genetic  parameters  as well  as information  obtained  on effects  of the various factors should be of use in designing breeding programmes for the herds studied.

CHAPTER ONE:

GENERAL INTRODUCTION.

1.1        Introduction.

Agriculture   is  one  of the  most  important   sectors  in  the  economy   of  many  developing countries  where  it provides  survival  mechanism  for up to 80% of the population  (Cupps, 2007).  It plays a central role in the rural economy  of the developing  nations  (Omage et al.,

2007). The food crisis that has engulfed  Africa and the developing  countries requires a more concerted  effort. Major  food sources in the developing  countries  are almost entirely  starchy foods such as tubers, roots, and cereal crops. These obviously  do not and cannot  satisfy the protein needs of the populace. Protein intake and particularly  animal protein consumption  is generally  grossly  below  the recommended  rate (Omage  et al.,  2007).  The British  Medical Association  recommended  a minimum  daily intake of 34.4g of animal protein per adult per day. Unfortunately  most developing  countries, consumption  is at 7.5g of animal  protein  as against 28g consumed by an average Briton (Wines, 2009).

Over  800  million  people  worldwide   suffer  from  malnutrition   and  hunger  either because of low food production  and unequal distribution  and also because the people are too poor  and  therefore  lack  the  income  to  acquire  adequate  quantities  and  qualities  of  food (Bayemi et al.,  2005; Palitza,  2009).  This is true of the people of Africa who consume foods that consist mainly of starch and oil (Redmond, 2009). Cattle production  offers an avenue for rapid transformation  in animal protein, because  beef enjoys wide acceptability  in the world (Zahraddeen  et al., 2007). Cattle also contribute  to subsistence, nutrition, income generation, social and cultural functions. However, their main products remain meat, milk, hides, manure and  traction.  Beef  and  milk  consumption   have  grown  more  than  5%  per  year  and  are projected  to grow even faster until 2020 (Cupps, 2007).

The  expanding  demand  for  cattle  products  is the  result  of  a combination  of high income  growth,  population   growth,  urbanisation   and  the  diversification   of  the  diets  in developing countries away from very high levels of starchy staples to protein (Nwosu, 2002). It is for these reasons that most African countries have embarked  on breed evaluation  which could  lead  to an increase  in livestock  production.  An important  component  of  successful planning  of future breeding  schemes is from documentation  of progress  from past selection.

However,  few  of such  documentations  have  been  conducted  for cattle  breeds,  especially  in Africa,  largely because of their long generation interval (Abdullah  and Olutogun,  2006). Cattle constitute an important part of the livestock  sector in Cameroon.  The country is also  endowed   with  the  resources  for  the  production   of  animal  feed  all  the  year  round, especially  as forage, crops residuals  and weeds are readily  available. Cattle are important  in Cameroon in several ways depending on the ethnic group and the culture of the people.  They serve as an important source of income, animal proteins; skins are used in industry to produce wears,  bags  and  other  household  furniture   (Redmond,  2009).  Therefore  increasing   cattle production  would  not only improve  the diet of Cameroonians  but could create  surpluses  for export.  The new  scenario  of the Cameroonian  beef industry,  inserted  in the  new  order  of a global  world  economy,  induces  the  cattle  producers  to  search  for  more  productive  breeds. They  generally  resort  to  uncontrolled  crossbreeding  as  a  means  to  rapidly  improve  on  the live-weight.   Though  crossbreeding   has  been  widely  proposed   for  improvement   of  cattle breeds in the tropics,  the consequences  could be disastrous  if not properly handled  (Ferraz et al.,  2006).  This has been the case with the Gudali cattle of Adamawa,  Cameroon which has along the years suffered from uncontrolled crossbreeding with the white and red Zebu breeds.

In Adamawa  region,  Cameroon,  the local  Gudali is the predorminant  breed  and it constitutes  about 19% of total cattle production in Cameroon  (Ngaoundere Gudali  15% and Banyo  Gudali  4%)  and remains  the most popular,  especially  in  smallholder  sector of the Adamawa  (Tawah et al., 1993). The Gudali (Figure  1) is a short-horned  Zebu cattle found within  the  West  and  Central  African  region.  It  is  of  good  temperament;  excellent  beef production   potential;   and  can  produce   and  reproduce   optimally   under  the  prevailing conditions of the tropical environment without much additional inputs (Ebangi,  1999).  They are docile, and have great temperaments;  in addition,  they are quite hardy.  It is medium to large sized and slow maturing  compared  with many other cattle breeds  (Tawah  and Mbah 1989).

Attempts were therefore made at Institute of Agricultural Research for Development (IARD)  of Cameroon  to crossbreed  the Brahman  with the local Gudali to improve  on the growth traits of the local Gudali. The Brahman bulls (Figure 2) were crossed with the local Gudali cows to produce the first filial generation called “Prewakwa.  It was inter se mated to produce a two-breed synthetic beef breed, the Wakwa (Figure 3). Wakwa is characterized  by a variety  of coat  colours.  At  maturity,  males  and  females  weigh  about  512  and 426  kg, characterized  by a variety of coat colours.  It has a broad but slightly convex face,  long but drooping  ears,   short  but  broad-based   horns  an  oval  hump  and  a  straight  but  broad  back (Ebangi,  1999).

Genetic  improvement   of  any  breed  within   a  given  environment   will   depend   on identifying    the   major    environmental    constraints    to   perform ance,   devising   means    of alleviating  or controlling  them  and then evaluating  the breed for its adaptability  to cope with constraints  that  can  not  be readily  controlled.  Knowledge  of non-genetic  influences  on the performance    of   farm    animals   is   therefore    very   important    when   planning    breeding programmes   aimed  at  improving  productivity   and  in  the  development  of  other  breeding policies.

Improvement  of live-weight  traits is an increasingly  important  breeding  goal in beef cattle and other livestock production  systems (Peters et al.,  1998). The change in the mean of a trait during a few initial cycles of a directional selection imposed on a population is among the most reliable criteria for estimating the exploitable amount of genetic variation in a given genetic population.  Therefore, knowledge of the genetic parameters, magnitude and direction of genetic correlations  of certain major  metric traits of economic importance  in a selection program  are needed.  This will be necessary  in the optimization  and prediction  of genetic progress from a selection program.

Estimation of variance components is always an important tool in developing animal breeding programs.  Estimates of variance components must be accurate since error variance for predicted  breeding  values increases  as differences  between estimated  and true value of variance  components  increase  (El-said et al., 2005).  Heritabilities  and genetic  correlations estimates  are essential  parameters  required  in livestock breeding research  as well as in the design  and  application   of  practical   animal  breeding  programmes.  In  applying  genetic concepts  to  animal  breeding,  heritability  is  a fundamental  population  parameter  since  it largely  determines  the prospect  for changing  a population  by selection.  Therefore,  correct knowledge of heritability will help to predict breeding value of the animals hence their proper selection for further improvement programme.

Many  economically   important   traits  such  as  growth  traits  have  some  form  of relationship  where a change in the value of one is accompanied by a change in the value of the  other. This  is the  concept  of genetic  correlation.  Initial  growths  of calf,  especially  in suckling period, are affected not only by direct additive genetic but also by maternal additive genetic and maternal permanent  environmental  effects. Therefore, particularly, if there is a negative correlation between direct and maternal genetic effects, both effects should be taken into  account  in  selection  processes   to  achieve  optimum  genetic  progress   (Dezfuli  and Mashayekhi, 2009).

In conclusion,  study  of environmental  factors,  estimates  of heritability,  correlation between  growth traits and the level of inbreeding, provide  vital information  for beef cattle breeding   programmes.   Such  information   will  be  useful   for  genetic  improvement   and attainment of higher levels of performance.

Over  the  years  the  Institute  of  Agricultural   Research  for  Development   (IARD), Wakwa Station, Cameroon  accumulated  records  on the growth performance  of Gudali  and Wakwa  beef cattle,  some of which have not been comprehensively  exploited.  The present study was to evaluate  genetically the growth traits using data collected from 1968  and 1988 from the Institute of Agricultural Research for Development  (IARD), Wakwa Station.

1.2       Objectives of the Study.

The objectives of this study were to:

1.  Study the non-genetic  (environmental)  factors that affect growth traits in the Gudali and

Wakwa cattle.

2.   Study the level of inbreeding in the Gudali and Wakwa beef cattle population.

3. Estimate (Co) variance components of growth traits in Gudali and Wakwa beef cattle.

4. Estimate heritabilities for growth traits in both breeds.

5.   Estimate   genetic   correlations   between   direct  and  maternal   (ram)   effects  on  growth performance traits.

6. Estimate genetic correlations among growth traits in both breeds of cattle.

1.3       Justification

The  phenotypic  performance  is  the  result  of an  animal’s  true  genetic  capability  plus  its specific  ability  to cope  with  the environmental  stresses.  It is important  to understand  the effects  of  genotype  and environment  on the  performance  traits  of  a population.  Data  on growth performance  will provide the basis for evaluating the merits of the breed. Estimates of environmental  and adjustment  factors  are not only necessary  for planning  future  breeding strategies but would enable selection programme to be carried out more accurately in Gudali and  Wakwa  breed  herds.  Despite  the  important  role  of  the  environment   in  beef  cattle production  in Cameroon, studies on environmental  factors are rare in literature. Tawah et al. (1993) examined  factors  affecting  preweaning  growth  performance  of Gudali  and Wakwa cattle  using  the Least  Square  approach.  Ebangi  et al.   (2002a)  examined  factors  affectin16preweaning  and  post-weaning  growth  traits  using  mixed  model  procedure.  However,  these authors  used  only portion  of the data from  both breeds. There  is need to study these  factors affecting  growth traits for the remaining  selection data for the two breed Inbreeding   exists   in   some   degree   in   all   populations   (Pico   et  al.,   2004).   This phenomenon  is well documented  in all major  livestock,  for example,  effects  in beef cattle have been reviewed  by Burrow (1993).  Diverse  studies suggest that the level of inbreeding may vary amongst populations. Although inbreeding could compromise the immediate performance  and survival of the population, it also exposes the deleterious genes to the action of selection. Taking the above into account, any genetic evaluation should consider the rate of inbreeding  and its consequence  on the mean phenotypic performance  of the animals (Analla et al., 1999).

No  improvement   is  possible  for  a  trait  if  there  is  no  variation  (Nwosu,  2002). Phenotypic, environmental  and genetic variances are important materials for selection and in the improvement  of farm animals.  Although maintaining  reproductive  efficiency in the herd should be of particular concern, increasing growth potential is very important to meet output from  the  production  system.  Of  interest  are  genetic  parameters  that  describe  permanent changes  in  growth  traits  with  time.  Adequate  knowledge   and  effective  use  of  genetic variations are important in the improvement  of economic characteristics in beef cattle through breeding.  Accurate  estimate  of  these  parameters  for  traits  of  economic  importance   are needed:

❖   in formulating effective and efficient breeding plans,

❖   in estimating genetic gains expected under mass selection as to identify problems and handicaps to be expected for necessary actions,

❖   in calculating breeding values,

❖   in determining the magnitude and direction of selection progress and

❖   in constructing selection indices (Nwakalor,  1975).

Many economically important beef traits such as growth traits have some form of relationship where a change in the value of one is accompanied by a change in the value of the other. This is the concept of genetic correlation. Pico (2005) reported that it would be useful to know the empirical  relationships   (additive  genetic  and  maternal  correlations)   of  growth  trait  in  a population.  Knowledge  of genetic  correlation  among  traits  will  help  in the  prediction  of correlated responses  and in the prediction of the breeding value of the animal for such traits

considered. Besides,  genetic  correlations  are of greatest interest  to breeders  because  they can indicate   how  things   are  likely   to  change   in  the  next  generation.  Therefore,   correlation estimates  between  traits  reflect  both  the  amount  and  direction  of  association   between  the traits that help in the designing  of programmes  for cattle improvement.

Past efforts of genetic  studies in beef cattle have been confined  mostly to small,  single herd  populations  (Abdullah  and  Olutogun,  2006).  However, in  recent  years  more  emphasis has  been  given  to performance  and  progeny  testing  in beef  herds  in America  and Australia (Meyer,  2005).  While   so  much  has  been  reported   on  genetic   studies  in  the  developed countries,  it  is  however   sad  that  little  information   is  available   on  genetic  studies  of  our indigenous  beef  breeds  in the tropics. Indeed, after  decades  of neglect, local  breeds  are now considered  as a source of useful variation  (Nwosu, 2002). There is therefore, the need for the investigation  of our indigenous  stock genetically.



This material content is developed to serve as a GUIDE for students to conduct academic research


GENETIC STUDY OF GUDALI AND WAKWA BEEF CATTLE BREEDS OF ADAMAWA REGION CAMEROON

NOT THE TOPIC YOU ARE LOOKING FOR?



A1Project Hub Support Team Are Always (24/7) Online To Help You With Your Project

Chat Us on WhatsApp » 09063590000

DO YOU NEED CLARIFICATION? CALL OUR HELP DESK:

  09063590000 (Country Code: +234)
 
YOU CAN REACH OUR SUPPORT TEAM VIA MAIL: [email protected]


Related Project Topics :

Choose Project Department